

1

Making Cancer History*

Identifying Treatment Planning System errors through IROC-H Head & Neck phantom irradiations

J. Kerns, D. Followill, R. Howell, A. Melancon, F. Stingo, S. Kry

UT MD Anderson Cancer Center

AAPM 2016

IROC-H & Phantoms

- IROC-H dosimetry reviews:
 - **On-site visits** •IROC-H physicist,
 - institution's machine
 - Phantom irradiations •DICOM, TLDs

 $\mathbf{2}$

Problem & Objective

• IROC phantoms fail a lot, even with wide criteria (Ibbott, *et al.* 2008; Molineu, *et al.* 2013)

• IROC-H currently can't definitively diagnose failures; similar to an IMRT QA failure, end-to-end test

•Pre-Tx QA does not accurately predict IROC-H failures (Kry, et~al.~2014)

- Failures can occur due to:
 - •Output
 - •Setup
 - •Delivery
 - •TPS modelling

• Can we definitively determine if an institution has a TPS modelling issue via IROC-H phantom?

JK6

Methods & Approach

• Solution: An accurate, independent recalculation system to compare against

•2nd Check TVS; Mobius3D

•Accurate, representative measurement data •On-site dosimetry data

•Recalculate ~200 H&N phantoms (2012-2015)

•3 sources: TLD, TPS, TVS; intercomparison identifies TPS error

JK6 An independent calc provides a comparison eval against TLDs. Disagreement indicates a problem with TPS model. James Kerns, 3/30/2016

"Standard" Data

- •On-site dosimetry data
 - •Point data: PDD, Output Factors, Offaxis, MLC output factors
 - •Accurate (same equipment/people)
 - $\bullet 2000$ -present
 - \sim 500 machines
 - •30+ models

•Goal: Combine dosimetrically equivalent models into "classes" using statistical & clinical criteria

 $\mbox{-}These$ data became the reference datasets for the TVS

	Class	Represented Models/Beams			
6 MV	Base	21EX (D), 23EX, 21iX, 23iX, Trilogy			
	ТВ	TrueBeam			
	TB-FFF	TrueBeam FFF			
	Trilogy SRS	Trilogy SRS			
	2300	2300 (C) (CD)			
	2100	2100 (C) (CD)			
	600	600 (C) (CD)			
	6EX	6EX			

Published as: Technical Report: Reference photon dosimetry data for Varian accelerators based on IROC-Houston Site Visit Data, Kerns et al, 2016 Medical Physics.

Matching the Standard Data

•Mobius3D has default model, but it's tunable

•Created 3 common beam models in our TVS & recalculated site visit fields:

•Varian Base

•Varian TrueBeam

•Elekta Agility

cm/cm²/cm²/cm	PDD 10x10	Jaw Output	IMRT output	SBRT output	Off-Axis
5/6x6/2x2/5	-0.12%	0.94%	-0.74%	2.06%	-0.58%
10/15x15/3x3/10	-0.15%	-0.29%	-0.23%	1.71%	-0.19%
15/20x20/4x4/15	0.60%	-0.19%	-0.34%	1.29%	-0.38%
20/30x30/6x6	-0.26%	-0.28%	0.43%	0.98%	

M3D Default Varian 6 MV Base Class Model: 11.8

	PDD 10x10	Jaw Output	IMRT output	SBRT output	Off-Axis
5/6x6/2x2	-0.12%	0.21%	-0.94%	-0.51%	-0.10%
10/15x15/3x3	-0.15%	0.00%	-0.72%	-0.12%	0.00%
15/20x20/4x4	0.20%	0.00%	-0.59%	-0.12%	0.00%
20/30x30/6x6	-0.52%	-0.09%	0.21%	0.00%	

M3D Optimized Varian 6 MV Base Class Model: **5.0**

Recalculations

•Chose H&N phantom irradiations

•Institution DICOM dataset was linked to the representative model (21EX -> Base)

•Recalculated dose using the TVS

•Pulled out the TLD calculated doses for each phantom

TPS Error

•TPS Error:

$$\mathbf{E} = \frac{1}{6} \sum_{n=1}^{6} \left(\left| 1 - \frac{TPS_n}{TLD_n} \right| - \left| 1 - \frac{TVS_n}{TLD_n} \right| \right) * 100$$

•Two criteria for "considerable" TPS error:

-Clinical: 2% average TVS improvement or 3% single TLD TVS improvement

and

•Statistical: Error value distribution was statistically significant

•Examined 2 subsets of phantoms: all and failures

Slide 8

JK17 This was a conservative approach using these metrics James Kerns, 3/30/2016

Results: All Phantoms

9

•Median improvement: +0.20%

•17% of all phantoms had a TPS error

JK14 Maybe make 3 "regions", explaining negatives, noise/middle, positive calcs James Kerns, 3/30/2016

Results: Failing Phantoms

10

•Median improvement: +3.08%•68% of failing phantoms had a TPS error

JK16

JK16 drop 2nd plot James Kerns, 3/30/2016

Conclusions

•IROC-H can now definitively determine if a phantom failed due to TPS modelling errors:

 $\bullet 17\%$ of all phantom irradiations have considerable TPS error

•68% of failing irradiations

•This methodology will be added to IROC-H workflow

•TPS error detection can be passed to the institution to guide a solution

Thank you! Questions?

Bonus

Bonus

•Which linac parameters most often disagree with the TPS?

> •In press: Agreement between institutional measurements and treatment planning system calculations for basic dosimetric parameters as measured by IROC-Houston, Kerns et al, 2016. International Journal of Radiation Oncology • Biology • Physics

